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Influence of charge variation on particle oscillations in the plasma sheath

A. V. Ivlev,* U. Konopka, and G. Morfill
Max-Planck-Institut fu¨r Extraterrestrische Physik, D-85740 Garching, Germany

~Received 8 March 2000!

The theory of dust particle oscillations in the plasma sheath is presented, taking into account particle
charging kinetics and neutral gas friction. Effects of ‘‘regular’’ and stochastic charge variations are considered.
It is shown that whilst regular variations generally enhance the damping of horizontally propagating dust lattice
waves, they can also cause an instability in the vertical oscillations of single particles. The stochastic charge
variations, if sufficiently strong, result in exponential growth of the mean energy of both types of oscillations.

PACS number~s!: 52.25.Zb, 52.25.Gj, 52.35.2g
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I. INTRODUCTION

Oscillations of charged dust particles trapped in a l
temperature plasma sheath have been considered in det
many publications@1–14#. The most interesting types of os
cillations are the vertical oscillations of single particles@1–3#
and the horizontal dust lattice~DL! waves@4,5#. Experimen-
tal study of these oscillations allows us to evaluate ba
parameters of the system—the particle charge, interpar
coupling parameter, etc.@8–10#. It is usually assumed tha
particles have an equilibrium charge, which is determined
the balance of the average ion and electron fluxes on
particle surface. However, the actual charge varies rando
around this mean value, because the fluxes are discrete
particle charge distribution is then a stationary Gaussian,
its dispersion is directly proportional to the mean parti
charge @15,16#. In addition, the electron temperature a
plasma potential~density! fluctuate locally in any rea
plasma. Since the particle size is much less than the elec
Debye length, this ‘‘noise’’ can significantly increase th
magnitude of the random charge fluctuations@17#.

Along with the stochastic charge fluctuations, there
also ‘‘regular’’ variations caused by the particle motion.
the plasma sheath, the equilibrium particle charge is a str
function of distance from the electrode surface, and thus
tical oscillations are always accompanied by regular cha
variations. In sufficiently dense plasma crystals, the horiz
tal DL waves also produce regular charge variations. Th
are two independent reasons for that. The first one is
charge variation due to the mutual decrease of electron flu
as particles approach each other@18#. This mechanism could
be especially important in a two-dimensional~2D! layer as a
result of surface density perturbations. The second me
nism arises in 3D crystals: It is caused by a depression of
electron-to-ion density ratio due to the local decrease
plasma potential in regions of increased dust~volume! den-
sity @19#. Below we focus on the case of a 2D plasma crys
and thus on the first mechanism of regular charge variat

The important peculiarity of the charging process is t
the particle charging time is finite~‘‘delayed’’ charging!.

*Permanent address: High Energy Density Research Center R
127412 Moscow, Russia.
PRE 621063-651X/2000/62~2!/2739~6!/$15.00
l in

ic
le

y
e
ly
he

nd

on

e

ng
r-
e
-

re
e

es

a-
e
f

l,
n.
t

This implies that the charge never reaches its equilibri
value~corresponding to the instantaneous position of the p
ticle!, even if we consider only regular variations. Rece
experiments by Nunomuraet al. @12# performed in a low-
pressure dc discharge show that the delayed particle char
can result in an instability of the vertical oscillations. In th
absence of the neutral gas friction this type of instability w
predicted by Nitteret al. @1#. In addition, Morfill et al. @11#
demonstrated theoretically that the stochastic charge va
tions may cause an instability of the DL wave for sufficien
small gas pressure. Numerical simulations of particle hea
by the charge fluctuations were performed by Vaulinaet al.
@14#, but the stochastic modulation of the vertical resonan
frequency was not taken into account. In this paper, we c
sider both vertical oscillations of single particles and ho
zontal DL waves, and we study separately the role of regu
and stochastic charge variations, taking into account
charging kinetics and gas friction. We assume a pressur
be sufficiently small, so that the particle oscillations a
weakly damped~otherwise, the charge variation effects a
‘‘hidden’’ by strong damping due to the friction!.

II. REGULAR CHARGE VARIATION

In this section we neglect the stochastic charge fluct
tions and consider only regular variations caused either
relative horizontal displacements, or by vertical motion.

Horizontal oscillations (DL wave): In order to describe
the DL wave of small amplitude we apply the simplifie
model of the 1D particle string@4,5,11#. In a steady state
particles of the massM and chargeQ0,0 are separated by
the distanceD and interact via a shielded Coulomb potenti
the screening length approximately equals the electron
bye lengthlDe . For simplicity, we assumeD*lDe , i.e.,
only the nearest neighbor interactions are essential. Pertu
tions of particle position in the wave result in a variation
the charges. Let us present the charge of each particl
Qn5Q01dQn , wheredQn;O(yn ,yn61), andyn is the di-
mensionless displacement of thenth particle. Then, we can
directly use the equations for the dimensionless displacem
derived in Ref.@11# @Eqs. ~2! and ~3!#. Neglecting terms
O(yn

2 ,ynyn61), we obtain
S,
2739 ©2000 The American Physical Society
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ÿn12g ẏn1VDL
2 ~yn2yn112yn21!

5
h

11h2
VDL

2 ~dQ̃n212dQ̃n11!, ~1!

whereg is the damping rate due to neutral gas friction@20#,
h511D/lDe , the displacementyn is normalized toD,
dQ̃n615dQn61 /Q0 is the dimensionless charge variatio
and the DL frequency scale is

VDL
2 5

Q0
2

MD3
~11h2!e12h.

The kinetic equation for the particle charge is of the form

Q̇n52Vch~Qn2Qn
(eq)!, ~2!

whereVch is the steady-state charging frequency of a part
@21#. The ‘‘instantaneous’’ equilibrium charge,Qn

(eq) , is a
function of the displacement of thenth particle with respect
to the (n11)th and (n21)th particles. Assuminguyn
2yn61u!1, we can approximate these dependencies by
factors 11a(yn112yn) and 11a(yn2yn21), respectively,
or

Qn
(eq).Q0@11a~yn112yn21!#, ~3!

wherea.0 is some coefficient@18#. Substituting Eq.~3! in
Eq. ~2!, we obtain the following equation for the charg
variation

dQ̇n52Vch@dQn2aQ0~yn112yn21!#. ~4!

For the traveling wave, all the variables are proportiona
exp$i(vt1KnD)%, where K is the wave vector,2p<KD

<p. Substituting this form foryn anddQ̃n in Eqs. ~1! and
~4!, we get the dispersion relation for the DL wave with t
regular charge variation and delayed charging,

~ iv1Vch!@2v212igv12VDL
2 ~12cosKD!#

52AVDL
2 Vch~12cos 2KD!, ~5!

whereA5ah/(11h2) is a measure of regular charge vari
tions in the wave. The derived dispersion relation has sim
structure. The left-hand side is the product of two facto
The first one, (iv1Vch), represents the dust charging~DCh!
branch @22# and describes the charge variation decay,
second one represents the DL branch. The right-hand sid
Eq. ~5! describes the coupling of these branches. We ass
that the damping of the DL oscillations due to neutral fr
tion is small, Rev@g, and that the dust charging branch
weakly coupled with the DL branch, i.e.,Vch@uvu @22#.
Then Rev@Im v, and Eq.~5! can be solved approximatel
for the DL branch. Extracting the real and imaginary parts
Eq. ~5! we obtain the solution for the frequency Rev and
damping rate Imv of the DL wave,

~Rev!2.2VDL
2 @~12cosKD!2A~12cos 2KD!#[v0

2 ,
e

e

o

le
.

e
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Im v.g1A
VDL

2

Vch
~12cos 2KD!. ~6!

Figure 1 shows the dependence ofv0
2/VDL

2 on KD for dif-
ferent values of the parameterA. This parameter grows rap
idly with the dust density. While the density is small an
A,1/4, the phase velocity of long waves decreases withA
as CDLuK→0.A124ADVDL . For sufficiently high density,
when A.1/4, long-wavelength perturbations are unsta
and grow exponentially without oscillations@~Rev!2,0#.
This is because the charge decreases too rapidly and th
ergy of interparticle coupling diminishes as particles a
proach. The delayed charging (Vch

21 is finite! does not affect
the frequency of oscillations, but increases the damping
in Eq. ~6! ~see Fig. 2!. Note, that the damping rate is max
mal atKD5p/2 and it tends tog for KD→0,p. The physi-
cal background of the delayed charging damping is con
ered in the next subsection.

Vertical oscillations: The equation of vertical motion for a
single particle is

z̈12g ż5
QE

M
2g, ~7!

where E is the electric field,E,0. The particle oscillates
around the steady-state positionz50, E(0)5E0 and
Q(eq)(0)5Q0,0. For sufficiently small amplitude of oscil
lations we can setE.E01E08z ~a prime denotes the deriva
tive at z50). Substituting this expression together withQ
5Q01dQ in Eq. ~7! and using the conditionQ0E05Mg,
we obtain

FIG. 1. Squared frequency of the DL wave with regular cha
variations,v0

2/VDL
2 @normalized to the DL frequency scaleVDL ,

see Eq.~6!# vs the dimensionless wave vector,KD. The curves
correspond toA50 ~1!, A50.1 ~2!, andA50.4 ~3!.

FIG. 2. Relative variation of the damping rate of the DL wa
with regular charge variations, (Imv/g21) @normalized to the
friction dampingg, see Eq.~6!#, vs the dimensionless wave vecto
KD, in units ofAVDL

2 /gVch.
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z̈12g ż2
Q0E08

M
z5gdQ̃. ~8!

The kinetic equation for the charge is similar to Eq.~2!, Q̇
52Vch(Q2Q(eq)), where the equilibrium charge is

Q(eq).Q01Q08z. ~9!

Thus, we get the following kinetic equation for the char
variation:

dQ̇52Vch~dQ2Q08z!. ~10!

For a harmonic solution of Eqs.~8! and ~10! we obtain

~ iv1Vch!S 2v212igv2
Q0E08

M D 5
Q08E0

M
Vch. ~11!

The structure of Eq.~11! is completely similar to that of the
dispersion relation~5!: The left-hand side represents the DC
branch and the branch of vertical oscillations, and the rig
hand side describes the coupling between them. Solving
obtained equation with the same assumptions, we get
proximate expressions for the frequency and damping rat
the oscillations,

~Rev!2.2
~QE!08

M
[Vv

2 ,

Im v.g2
1

2 S Q08E0

~QE!08
D Vv

2

Vch
, ~12!

whereVv is the eigenfrequency of the vertical oscillation
Figure 3 shows a qualitative dependence ofQ(eq) and E as
functions of the vertical positionz. The charge is practically
independent ofz in the bulk plasma, but as the electrode
approached it decreases rapidly (uQ(eq)u increases! in the
presheath and just below the sheath edge. At even smalz,
the charge attains a minimum and then starts increas
Normally, particles are trapped near the sheath edge, w
(QE)08,0. But, if the amplitude of oscillations is too larg
and a particle enters the region I, where (QE)08.0, the mo-
tion becomes unstable@(Rev)2,0# and the particle drops
onto the electrode.

There is one more region of instability, where2Q08E0 is
positive and exceeds a certain threshold, so that the dam

FIG. 3. Qualitative dependence of the equilibrium partic
charge,Q(eq), and the vertical electric field in a plasma,E, as func-
tion of the distancez from the lower electrode. In regions I and
the particle motion can be unstable.
t-
he
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.

r
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rate Imv is negative~region II!. This instability was ob-
served and explained qualitatively by Nunomuraet al. @12#.
Due to delayed charging, the particle motion is not a pot
tial one~even in the absence of friction!. On the way down,
uQ(z)u is always less than the equilibrium valueuQ(eq)(z)u,
whereas on the way up the opposite inequality holds. The
fore, the particle gains energy during the whole circle
oscillation, and if this exceeds the energy dissipation due
friction, then oscillations are unstable. Note that in the a
sence of friction the condition of the instabilityQ08E0,0
was obtained for the first time by Nitteret al. @1#.

In contrast with the vertical oscillations, the~horizontal!
DL wave is damped due to delayed charging@see Eq.~6!#.
The physics of this damping is the same as that of the in
bility considered above. As particles approach in the D
wave, the absolute value of their equilibrium charge~3! de-
crease. Therefore,uQnu.uQn

(eq)u during compression, and th
opposite during rarefaction, so that delayed charging cau
particles to lose energy in the DL oscillations.

III. STOCHASTIC CHARGE VARIATION

Let us consider the role of stochastic fluctuations. W
assume that the random variations of charge are much s
ger than the regular ones, so that the kinetic of stocha
variations only is taken onto account. This approach allo
us to determine the conditions when one or the other kind
the variation is more important. The charge is no longe
self-consistent variable, but is an independent random fu
tion with certain stochastic properties. Below we assume
the random charge variation is a stationary process, and
mean charge equals the equilibrium value.

Horizontal oscillations (DL wave): We can present the
charge of each particle asQn5^Qn&1dQn(t), where the
average chargêQn& equalsQn

(eq) from Eq.~3! anddQn(t) is
a random function. Let us consider a solution of the fo
yn5y(t)exp(iKnD). Using results of Ref.@11# @Eqs.~2! and
~3!# we readily obtain the following stochastic equation f
the amplitude of the traveling DL wave with a random
varying particle charge:

ÿ12g ẏ1v0
2@11j~ t !#y5 f ~ t !, ~13!

wherev0 is determined by Eq.~6! and the random functions
are

j~ t !5dQ̃2S VDL

v0
D 2

@dQ̃1~eiKD21!1dQ̃2~e2 iKD21!#,

f ~ t !5
h

11h2
VDL

2 ~dQ̃22dQ̃1!. ~14!

Here dQ̃[dQ̃n , dQ̃1 , anddQ̃2 denote the dimensionles
charge fluctuations on the ‘‘central,’’ ‘‘right,’’ and ‘‘left’’
particles, respectively. The only difference of Eq.~13! from
the similar equation derived in Ref.@11# is that now we take
into account the regular variations~assuming them to be
equilibrium!, which change the wave frequencyv0 and the
random functionj(t).
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We suppose that correlations of the charge fluctuations
neighboring particles are negligible,^dQ̃(t)dQ̃6(t2t)&.0.
This assumption is reasonable, since the spatial scal
plasma fluctuations~which determine the charge fluctua
tions! is always less than the electron Debye lengthlDe ,
whereas the interparticle distanceD*lDe . In the Langevin
approach for particle charging, the autocorrelation funct
is @15#

^dQ̃~ t !dQ̃~ t2t!&.s̃2 exp~2Vcht!, ~15!

wheres̃2 is the dimensionless dispersion of the charge d
tribution ~normalized toQ0

2). Note that the autocorrelatio
time is the inverse charging frequency. This result is natu
since relaxation of both regular and stochastic charge pe
bations is described by the same kinetic equation.

Of course, we cannot solve Eq.~13! exactly, since it is a
stochastic differential equation, and each solution of t
equation is determined by a particular realization of the r
dom variablej. However, properties of the stochastic pr
cessy(t;@j#) can be studied using the approximate meth
of expansion over small Kubo number@11#. This method
allows us to derive nonstochastic equations for moment
y: mean displacement,^y&, mean squared displacement a
velocity, ^yy* & and ^ ẏẏ* &, etc. In principle, the first two
moments ofy—the average and dispersion—allow us eva
ate the main peculiarities of the stochastic process. We
directly use the results of Ref.@11#, replacingv0 and j(t)
with those from Eqs.~13! and~14!. It was shown in Ref.@11#
that for reasonable parameters of a discharge, the equ
for ^y& is that of a damped harmonic oscillator with th
damping rate.g and frequency.v0. However, equations
for the second moments can be unstable@11#. Actually, func-
tions^yy* & and^ ẏẏ* & determine the mean energy^E& of the
DL wave. It implies, that the plasma crystal can be unsta
energy wise, due to the random charge variations. The m
energy changes with time as^E(t)&} exp(2GEt), with the
‘‘energy damping rate’’

1

2
GE.g2

1

2
s̃2

VDL
2

Vch
F S v0

VDL
D 2

14S VDL

v0
D 2

~12cosKD!G .
~16!

Using expression forv0
2/VDL

2 from Eq. ~6!, we plot the rela-
tive variation of the damping rate,1

2 GE /g21, versusKD for
different values of the parameterA ~see Fig. 4!. In contrast
with regular charge variations@which increase the DL damp
ing, see Eq.~6! and Fig. 2#, the random variations can induc
the instability at low pressures, and their influence does
vanish forKD→0,p.

Vertical oscillations: The vertical particle oscillations
with a randomly varying charge are described by Eq.~7!
with the chargeQ5^Q&1dQ(t), where ^Q& equalsQ(eq)

from Eq. ~9!. Using a linear expansion of the electric fiel
we get the stochastic equation

z̈12gz1Vv
2S 11

Q0E08

~QE!08
dQ̃~ t !D z5gdQ̃~ t !. ~17!
n
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Equation~17! has real coefficients and therefore is simp
for analysis than Eq.~13!. Using results from Ref.@23#, we
readily obtain that the mean amplitude^z& obeys the equa-
tion of a damped harmonic oscillator, as well. The cor
sponding damping rate is.g and the frequency.Vv . The
equation for the second moments gives the following thre
old of the energy-wise instability:

1

2
GE.g2

1

2 S s̃
Q0E08

~QE!08
D 2

Vv
2

Vch
. ~18!

The ‘‘energy damping rate’’~18! has the same structure a
that in Eq.~16!.

IV. DISCUSSION AND CONCLUSIONS

Although both the regular and stochastic variations
charge have the same relaxation time,Vch

21 , the effect of
these variations is different. If the damping rate due to fr
tion is sufficiently small, random fluctuations of charge res
in an instability of both types of oscillations—vertical an
horizontal. In contrast, the regular variations can cause
instability of the vertical oscillations, but increase the dam
ing rate of the DL wave.

The reason for this difference is the following: The reg
lar charge variation is a self-consistent variable depending
the particle displacement; the sign of the work done by
nonpotential force due to delayed charging~averaged over a
period of oscillation! is determined by the signs of the coe
ficientsQ08 anda in the expansion of the equilibrium charg
@see Eqs.~3! and ~9!#. For vertical oscillations, the work
}Q08 is positive, for the DL wave the work is proportional t
2a and is negative. In the case of stochastic charge va
tions, the particle motion is governed by equations of a pa
metric oscillator@see Eqs.~13! and ~17!# with a randomly
varying frequency. For both types of oscillations~vertical
and horizontal!, the time dependence of the frequency
characterized by the stochastic variation of charge,dQ̃(t).
The sign of the average work of the random forcedQ̃(t)r
~where r is y or z) equals the sign of the spectral dens
S(v) of the charge variation atv52v0 @24#. For any sta-
tionary random process with a monotonic autocorrelat
function @in particular, with that from Eq.~15!#, S(v).0 at
any v, so that the random fluctuations of charge alwa

FIG. 4. Relative variation of the ‘‘energy damping rate’’ of th

DL wave with stochastic charge fluctuations, (1
2 GE /g21) @normal-

ized to the friction dampingg, see Eq.~16!# vs the dimensionless

wave vector,KD, in units of s̃2VDL
2 /gVch. The curves correspond

to A50 ~1!, A50.1 ~2!, andA50.2 ~3!.
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cause the mean energy of oscillations to grow.
Comparing expressions for damping rates obtained for

regular and stochastic fluctuations, we can judge which k
of the charge variation might cause an instability~or damp-
ing! of oscillations in the case of a finiteVch

21 . Let us con-
sider typical experimental conditions of discharges: arg
plasma at pressuresp;1 –10 Pa, plasma number densi
ne,i;107–109 cm23, electron temperatureTe;1 eV, elec-
tron Debye lengthlDe;102–103 mm, particle radiusa
;1 –10 mm, particle charge numberZ;103–104. The
value of the charging frequency in the region of the she
edge has been estimated asVch;acs /lDe

2 @11#, where cs

5ATe /mi is the ion acoustic velocity. For our condition
Vch;103–106 s21. The friction damping isg;0.3–3 s21

@20#.
First, we investigate the DL wave. From Eqs.~6! and~16!

for damping rates we see that the regular~random! variations
of charge are more important when the scale of regular va
tions,A, is much greater~smaller! than that of random varia
tions,s̃2. Unfortunately, processes of the particle charging
dense plasma crystals are studied very little. For the con
ered parameters of discharge, numerical simulations@18#
predictA;0.03–0.1 for two particles separated horizonta
in the sheath byD;lDe . However, direct measurements
the interparticle interaction@6,7# do not show noticeable
variation of the particle charge for this separation. App
ently, value ofA does not exceed;0.1 in real experiments
and therefore the squared frequencyv0

2 of the DL wave@see
Eq. ~6!# is always positive. It is also difficult to estimate th
value of the dispersions̃2. The lower limit for the dispersion
is determined by the charge discreteness,s̃2;Z21

;1023–1024 @15,16#. Plasma fluctuations can strongly in
creases̃2, but we do not know reliable measurements of t
effect in the sheath. Thus, bothA and s̃2 are somewhat
uncertain parameters.

The damping rate of the DL wave is changed significan
due to delayed charging, whenAVDL

2 /gVch*1 @regular

variations, see Eq.~6!#, or s̃2VDL
2 /gVch*1 @stochastic

variations, see Eq.~16!#. For our conditions, the DL fre-
quency scale varies in the rangeVDL;30–33103 s21 @5#,
and VDL

2 /gVch;1 for p;10 Pa anda;10 mm. The role
the delayed charging increases at low pressures, espec
for small particles, sinceg}p/a, VDL

2 }a21, and Vch}pa
~we supposene}p), so thatVDL

2 /gVch}1/p2a. ParameterA
presumably does not depend neither ona, nor onp @18#. If
we setA;1022, then the regular variations are expected
-

.
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h
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-

s
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increase significantly the damping of the DL wave, whenp
&3 Pa anda&1 mm. The charge dispersion for stochas
fluctuations decreases witha as s̃2}a21. If s̃2;1023 for
a;1 mm, then the random variations might cause the ins
bility for p&1 Pa anda&1 mm.

For vertical oscillations, the role of the delayed chargi
can be evaluated from Eqs.~12! and~18! for damping rates.
We can rewrite these expressions in the following form:

Regular: Imv.g2
1

2 S l E /l Q

11l E /l Q
D Vv

2

Vch
,

Random:
1

2
GE.g2

1

2
S s̃

11l E /l Q
D 2

Vv
2

Vch
,

wherel Q5Q0 /Q08 andl E5E0 /E08 are the spatial scales o
change of the charge and electric field, respectively. Co
paring these expressions we see that the regular~random!
variations of charge are more important when the dispers
s̃2 is much smaller ~greater! than the value l E /l Q
1(l E /l Q)2. Therefore, if particles are small (a&1 mm)
and are levitated in the presheath, where the charge is p
tically constant (l E /l Q&1022), the stochastic variation o
charge may drive an instability of the vertical oscillation
sinces̃2 could be rather high for small particles. If particle
are large and trapped below the sheath edge, where the v
of l E /l Q might be of order of unity, a vertical oscillation
instability may be caused by regular charge variations.

For our conditions, the eigenfrequency of vertical oscil
tions is Vv;10–102 s21, and Vv

2/gVch;1 for p;3 Pa
and a;3 mm. Let us suppose thatE08}p @25#; Then Vv

2

}p/a2, and Vv
2/gVch}1/pa2. If we set l E /l Q;1021 be-

low the sheath edge, then the instability due to regular va
tions can start fora;3 mm at p;0.3 Pa. For smaller par
ticle, it is more likely to expect the instability due t
stochastic fluctuations: Ifa;0.3 mm, then the pressure
threshold is estimated asp;1 Pa.

Thus, at low pressures~of order of one Pa! both regular
and stochastic variations of charge can influence oscillati
of micron size particles in the sheath. Vertical oscillatio
can be unstable: For small particles, this is due to stocha
fluctuations, whereas for relatively large particles regu
variations might be responsible for the instability. Horizon
DL waves are damped by regular variations, but stocha
fluctuations can cause the wave instability. We believe t
varying the gas pressure and the particle size, the magni
of these effects can be measured in experiments.
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